
Package: colordistance (via r-universe)
August 22, 2024

Title Distance Metrics for Image Color Similarity

Date 2021-03-19

Version 1.1.2

Description Loads and displays images, selectively masks specified
background colors, bins pixels by color using either
data-dependent or automatically generated color bins,
quantitatively measures color similarity among images using one
of several distance metrics for comparing pixel color clusters,
and clusters images by object color similarity. Uses CIELAB,
RGB, or HSV color spaces. Originally written for use with
organism coloration (reef fish color diversity, butterfly
mimicry, etc), but easily applicable for any image set.

Imports jpeg, png, stats, clue, ape, mgcv, emdist, scatterplot3d,
plotly, gplots, abind, scales, spatstat.geom

Depends R (>= 3.4.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

Repository https://hiweller.r-universe.dev

RemoteUrl https://github.com/hiweller/colordistance

RemoteRef HEAD

RemoteSha e602b243c5065388317f182e6fe1fe1f3db9fde6

Contents
chisqDistance . 2
colorDistance . 3
combineClusters . 4

1

2 chisqDistance

combineList . 4
convertColorSpace . 5
EMDistance . 7
exportTree . 8
extractClusters . 9
getColorDistanceMatrix . 10
getHistColors . 12
getHistList . 12
getImageHist . 14
getImagePaths . 16
getKMeanColors . 17
getKMeansList . 19
getLabHist . 20
getLabHistList . 23
heatmapColorDistance . 25
imageClusterPipeline . 26
loadImage . 29
normalizeRGB . 31
orderClusters . 32
pause . 33
plotClusters . 34
plotClustersMulti . 35
plotHist . 36
plotImage . 37
plotPixels . 38
removeBackground . 40
scatter3dclusters . 41
weightedPairsDistance . 42

Index 44

chisqDistance Chi-square distance between vectors

Description

Computes the chi-squared distance between each element of a pair of vectors which must be of the
same length. Good for comparing color histograms if you don’t want to weight by color similarity.
Probably hugely redundant; alas.

Usage

chisqDistance(a, b)

Arguments

a Numeric vector.

b Numeric vector; must be the same length as a.

colorDistance 3

Value

Chi-squared distance, (a − b)2/(a + b), between vectors a and b. If one or both elements are
NA/NaN, contribution is counted as a 0.

Examples

colordistance:::chisqDistance(rnorm(10), rnorm(10))

colorDistance Sum of Euclidean distances between color clusters

Description

Calculates the Euclidean distance between each pair of points in two dataframes as returned by
extractClusters or getImageHist and returns the sum of the distances.

Usage

colorDistance(T1, T2)

Arguments

T1 Dataframe (especially a dataframe as returned by extractClusters() or getImageHist(),
but first three columns must be coordinates).

T2 Another dataframe like T1.

Value

Sum of Euclidean distances between each pair of points (rows) in the provided dataframes.

Examples

Not run: cluster.list <- colordistance::getHistList(system.file("extdata",
"Heliconius/Heliconius_B", package="colordistance"), lower=rep(0.8, 3),
upper=rep(1, 3))
colordistance:::colorDistance(cluster.list[[1]], cluster.list[[2]])
End(Not run)

4 combineList

combineClusters Average 3D color histograms by subdirectory

Description

Calculates color histograms for images in immediate subdirectories of a folder, and averages his-
tograms for images in the same subdirectory.

Usage

combineClusters(folder, method = "mean", ...)

Arguments

folder Path to the folder containing subdirectories of images. Must be a character vec-
tor.

method Method for combining color histograms. Default is "mean", but other generic
functions ("median", "sum", etc) will work. String is evaluated using "eval"
so any appropriate R function is accepted.

... Additional arguments passed to getHistList, including number of bins, HSV
flag, etc.

Examples

combined_clusters <- colordistance::combineClusters(system.file("extdata",
"Heliconius", package="colordistance"), method="median", bins=2,
lower=rep(0.8, 3), upper=rep(1, 3))

combineList Combine a list of cluster features into a single cluster set

Description

Combine a list of cluster features as returned by getHistList according to the specified method.

Usage

combineList(hist_list, method = "mean")

Arguments

hist_list A list of cluster dataframes as returned by getHistList.

method Method for combining color histograms. Default is "mean", but other generic
functions ("median", "sum", etc) will work. String is evaluated using "eval"
so any appropriate R function is accepted.

convertColorSpace 5

Note

While the function can also accept clusters generated using kmeans (getKMeansList followed by
extractClusters), this is not recommended, as kmeans does not provide explicit analogous pairs
of clusters, and clusters are combined by row number (all row 1 clusters are treated as analogous,
etc). Color histograms are appropriate because the bins are defined the same way for each image.

Examples

hist_list <- getHistList(system.file("extdata", "Heliconius/Heliconius_A",
package="colordistance"), lower=rep(0.8, 3), upper=rep(1, 3))
median_clusters <- combineList(hist_list, method="median")

convertColorSpace Convert between color spaces

Description

Wrapper for convertColor that builds in random sampling, error messages, and removes default
illuminant (D65) to enforce manual specification of a reference white.

Usage

convertColorSpace(
color.coordinate.matrix,
from = "sRGB",
to = "Lab",
sample.size = 1e+05,
from.ref.white,
to.ref.white

)

Arguments

color.coordinate.matrix

A color coordinate matrix with rows as colors and channels as columns. If a
color histogram (e.g. as returned by getImageHist) is passed, the ’Pct’ column
is ignored.

from, to Input and output color spaces, passed to convertColor. See details.

sample.size Number of pixels to be randomly sampled from filtered pixel array for con-
version. If not numeric or larger than number of colors provided (i.e. cluster
matrix), all colors are converted. See details.

from.ref.white, to.ref.white
Reference whites passed to convertColor. Unlike convertColor, no default
is provided. See details for explanation of different reference whites.

6 convertColorSpace

Details

Color spaces are all passed to convertColor, and can be any of: "XYZ", "sRGB", "Apple RGB",
"CIE RGB", "Lab", or "Luv".

Lab and Luv color spaces are approximately perceptually uniform, meaning they usually do the best
job of reflecting intuitive color distances without the non-linearity problems of more familiar RGB
spaces. However, because they describe object colors, they require a reference ’white light’ color
(dimly and brightly lit photographs of the same object will have very different RGB palettes, but
similar Lab palettes if appropriate white references are used). The idea here is that the apparent
colors in an image depend not just on the "absolute" color of an object, but also on the available
light in the scene. There are seven CIE standardized illuminants available in colordistance (A,
B, C, E, and D50, D55, and D65), but the most common are:

• "A": Standard incandescent lightbulb

• "D65": Average daylight

• "D50": Direct sunlight

Color conversions will be highly dependent on the reference white used, which is why no default
is provided. Users should look into standard illuminants to choose an appropriate reference for a
dataset.

The conversion from RGB to a standardized color space (XYZ, Lab, or Luv) is approximate, non-
linear, and relatively time-consuming. Converting a large number of pixels can be computationally
expensive, so convertColorSpace will randomly sample a specified number of rows to reduce the
time. The default sample size, 100,000 rows, takes about 5 seconds convert from sRGB to Lab
space on an early 2015 Macbook with 8 GB of RAM. Time scales about linearly with number of
rows converted.

Value

A 3- or 4-column matrix depending on whether color.coordinate.matrix included a ’Pct’ col-
umn (as from getImageHist), with one column per channel.

Examples

Convert a single RGB triplet and then back convert it
rgb_color <- c(0, 1, 0)
lab_color <- colordistance::convertColorSpace(rgb_color,
from="sRGB", to="Lab", to.ref.white="D65")
rgb_again <- colordistance::convertColorSpace(lab_color,
from="Lab", to="sRGB", from.ref.white="D65")

Convert pixels from loadImage() function
img <- colordistance::loadImage(system.file("extdata",
"Heliconius/Heliconius_B/Heliconius_07.jpeg", package="colordistance"))
lab_pixels <- colordistance::convertColorSpace(img$filtered.rgb.2d,
from="sRGB", to="XYZ", sample.size=5000)

Convert clusters
img <- colordistance::loadImage(system.file("extdata",
"Heliconius/Heliconius_B/Heliconius_07.jpeg", package="colordistance"))

https://en.wikipedia.org/wiki/Standard_illuminant

EMDistance 7

img_hist <- colordistance::getImageHist(img, bins=2, plotting=FALSE)
lab_clusters <- colordistance::convertColorSpace(img_hist, to.ref.white="D55")

EMDistance Earth mover’s distance between two sets of color clusters

Description

Calculates the Earth mover’s distance (briefly, the amount of work required to move the data from
one distribution to resemble the other distribution, or the amount of "dirt" you have to shovel
weighted by how far you have to shovel it). Accounts for both color disparity and size disparity.
Recommended unless binAvg is off for histogram generation. Note: this function is not exported
by the package, since it is fairly specific to the colordistance framework. For a more generic imple-
mentation of EMD, see the [emdist::emd] function in the emdist package.

Usage

EMDistance(T1, T2)

Arguments

T1 Dataframe (especially a dataframe as returned by link{extractClusters} or
getImageHist, but first three columns must be coordinates).

T2 Another dataframe like T1.

Value

Earth mover’s distance between the two dataframes (metric of overall bin similarity for a pair of
3-dimensional histograms).

Examples

Not run:
cluster.list <- colordistance::getHistList(system.file("extdata",
"Heliconius/Heliconius_B", package="colordistance"), lower=rep(0.8, 3),
upper=rep(1, 3))
colordistance:::EMDistance(cluster.list[[1]], cluster.list[[2]])

End(Not run)

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm

8 exportTree

exportTree Export a distance matrix as a tree object

Description

Converts a symmetrical distance matrix to a tree and saves it in newick format. Uses hclust to
form clusters.

Usage

exportTree(getColorDistanceMatrixObject, file, return.tree = FALSE)

Arguments

getColorDistanceMatrixObject

A distance matrix, especially as returned by getColorDistanceMatrix, but any
numeric symmetrical matrix will work.

file Character vector of desired filename for saving tree. Should end in ".newick".

return.tree Logical. Should the tree object be returned to the working environment in addi-
tion to being saved as a file?

Value

Newick tree saved in specified location and as.phylo tree object if return.tree=TRUE.

Examples

Not run:
clusterList <- colordistance::getHistList(dir(system.file("extdata",
"Heliconius/", package="colordistance"), full.names=TRUE), lower=rep(0.8, 3),
upper=rep(1, 3))
CDM <- colordistance::getColorDistanceMatrix(clusterList, method="emd",
plotting=FALSE)

Tree is both saved in current working directory and stored in
heliconius_tree variable

heliconius_tree <- colordistance::exportTree(CDM,
"./HeliconiusColorTree.newick", return.tree=TRUE)
End(Not run)

extractClusters 9

extractClusters Extract cluster values and sizes from kmeans fit objects

Description

Extract a list of dataframes with the same format as those returned by getHistList, where each
dataframe has 3 color attributes (R, G, B or H, S, V) and a size attribute (Pct) for every cluster.

Usage

extractClusters(getKMeansListObject, ordering = TRUE, normalize = FALSE)

Arguments

getKMeansListObject

A list of kmeans fit objects (especially as returned by getKMeansList).

ordering Logical. Should clusters by reordered by color similarity? If TRUE, the Hungar-
ian algorithm via solve_LSAP is applied to find the minimum sum of Euclidean
distances between color pairs for every pair of cluster objects and colors are
reordered accordingly.

normalize Logical. Should each cluster be normalized to show R:G:B or H:S:V ratios
rather than absolute values? Can be helpful for inconsistent lighting, but reduces
variation. See normalizeRGB.

Value

A list of dataframes (same length as input list), each with 4 columns: R, G, B (or H, S, V) and Pct
(cluster size), with one row per cluster.

Note

Names are inherited from the list passed to the function.

Examples

clusterList <- colordistance::getKMeansList(system.file("extdata",
"Heliconius/Heliconius_A", package="colordistance"), bins=3)

colordistance::extractClusters(clusterList)

10 getColorDistanceMatrix

getColorDistanceMatrix

Distance matrix for a list of color cluster sets

Description

Calculates a distance matrix for a list of color cluster sets as returned by extractClusters or
getHistList based on the specified distance metric.

Usage

getColorDistanceMatrix(
cluster.list,
method = "emd",
ordering = "default",
size.weight = 0.5,
color.weight = 0.5,
plotting = TRUE,
...

)

Arguments

cluster.list A list of identically sized dataframes with 4 columns each (R, G, B, Pct or H, S,
V, Pct) as output by extractClusters or getHistList.

method One of four possible comparison methods for calculating the color distances:
"emd" (uses EMDistance, recommended), "chisq" (uses chisqDistance), "color.dist"
(uses colorDistance; not appropriate if binAvg=F), or "weighted.pairs"
(weightedPairsDistance).

ordering Logical if not left as "default". Should the color clusters in the list be reordered
to minimize the distances between the pairs? If left as default, ordering depends
on distance method: "emd" and "chisq" do not order clusters ("emd" orders on
a case-by-case in the EMDistance function itself and reordering by size simi-
larity would make chi-squared meaningless); "color.dist" and "weighted.pairs"
use ordering. To override defaults, set to either T (for ordering) or F (for no
ordering).

size.weight Same as in weightedPairsDistance.

color.weight Same as in weightedPairsDistance.

plotting Logical. Should a heatmap of the distance matrix be displayed once the function
finishes running?

... Additional arguments passed on to heatmapColorDistance.

getColorDistanceMatrix 11

Details

Each cell represents the distance between a pair of color cluster sets as measured using either chi-
squared distance (cluster size only), earth mover’s distance (size and color), weighted pairs (size and
color with user-specified weights for each), or color distance (Euclidean distance between clusters
as 3-dimensional - RGB or HSV - color coordinates).

Earth mover’s distance is recommended unless binAvg is set to false during cluster list generation
(in which case all paired bins will have the same colors across datasets), in which case chi-squared
is recommended. Weighted pairs or color distance may be appropriate depending on the question,
but generally give poorer results.

Value

A distance matrix of image distance scores (the scales vary depending on the distance metric chosen,
but for all four methods, higher scores = more different).

Examples

Not run:
cluster.list <- colordistance::getHistList(c(system.file("extdata",
"Heliconius/Heliconius_A", package="colordistance"), system.file("extdata",
"Heliconius/Heliconius_B", package="colordistance")), lower=rep(0.8, 3),
upper=rep(1, 3))

Default values - recommended!
colordistance::getColorDistanceMatrix(cluster.list, main="EMD")

Without plotting
colordistance::getColorDistanceMatrix(cluster.list, plotting=FALSE)

Use chi-squared instead
colordistance::getColorDistanceMatrix(cluster.list, method="chisq", main="Chi-squared")

Override ordering (throws a warning if you're trying to do this with
chisq!)
colordistance::getColorDistanceMatrix(cluster.list, method="chisq",
ordering=TRUE, main="Chi-squared w/ ordering")

Specify high size weight/low color weight for weighted pairs
colordistance::getColorDistanceMatrix(cluster.list, method="weighted.pairs",
color.weight=0.1, size.weight=0.9, main="Weighted pairs")

Color distance only
colordistance::getColorDistanceMatrix(cluster.list, method="color.dist",
ordering=TRUE, main="Color distance only")

End(Not run)

12 getHistList

getHistColors Vector of hex colors for histogram bin coloration

Description

Gets a vector of colors for plotting histograms from getImageHist in helpful ways.

Usage

getHistColors(bins, hsv = FALSE)

Arguments

bins Number of bins for each channel OR a vector of length 3 with bins for each
channel. Bins = 3 will result in 3^3 = 27 bins; bins = c(2, 2, 3) will result in 2 *
2 * 3 = 12 bins (2 red, 2 green, 3 blue), etc.

hsv Logical. Should HSV be used instead of RGB?

Value

A vector of hex codes for bin colors.

Examples

colordistance:::getHistColors(bins = 3)
colordistance:::getHistColors(bins = c(8, 3, 3), hsv = TRUE)

getHistList Generate a list of cluster sets for multiple images

Description

Applies getImageHist to every image in a provided set of image paths and/or directories containing
images.

Usage

getHistList(
images,
bins = 3,
bin.avg = TRUE,
lower = c(0, 0.55, 0),
upper = c(0.24, 1, 0.24),
alpha.channel = TRUE,
norm.pix = FALSE,
plotting = FALSE,

getHistList 13

pausing = TRUE,
hsv = FALSE,
title = "path",
img.type = FALSE,
bounds = c(0, 1)

)

Arguments

images Character vector of directories, image paths, or both.

bins Number of bins for each channel OR a vector of length 3 with bins for each
channel. Bins=3 will result in 3^3 = 27 bins; bins=c(2, 2, 3) will result in
2*2*3=12 bins (2 red, 2 green, 3 blue), etc.

bin.avg Logical. Should the returned color clusters be the average of the pixels in that
bin (bin.avg=TRUE) or the center of the bin (FALSE)? If a bin is empty, the center
of the bin is returned as the cluster color regardless.

lower RGB or HSV triplet specifying the lower bounds for background pixels. De-
fault upper and lower bounds are set to values that work well for a bright green
background (RGB [0, 1, 0]).

upper RGB or HSV triplet specifying the upper bounds for background pixels. De-
fault upper and lower bounds are set to values that work well for a bright green
background (RGB [0, 1, 0]). Determining these bounds may take some trial
and error, but the following bounds may work for certain common background
colors:

• Black: lower=c(0, 0, 0); upper=c(0.1, 0.1, 0.1)
• White: lower=c(0.8, 0.8, 0.8); upper=c(1, 1, 1)
• Green: lower=c(0, 0.55, 0); upper=c(0.24, 1, 0.24)
• Blue: lower=c(0, 0, 0.55); upper=c(0.24, 0.24, 1)

If no background filtering is needed, set bounds to some non-numeric value
(NULL, FALSE, "off", etc); any non-numeric value is interpreted as NULL.

alpha.channel Logical. If available, should alpha channel transparency be used to mask back-
ground? See removeBackground for more details.

norm.pix Logical. Should RGB or HSV cluster values be normalized using normalizeRGB?

plotting Logical. Should the histogram generated for each image be displayed?

pausing Logical. If plotting=T, should the function pause between graphing and wait
for user to hit [enter] before continuing? Useful for data/histogram inspection.

hsv Logical. Should HSV be used instead of RGB?

title String for what the title the plots if plotting is on; defaults to the image name.

img.type Logical. Should the file extension for the images be retained when naming
the output list elements? If FALSE, just the image name is used (so "Helico-
nius_01.png" becomes "Heliconius_01").

bounds Upper and lower limits for the channels; R reads in images with intensities on a
0-1 scale, but 0-255 is common.

14 getImageHist

Value

A list of getImageHist dataframes, 1 per image, named by image name.

Note

For every image, the pixels are binned according to the specified bin breaks. By providing the
bounds for the bins rather than letting an algorithm select centers (as in getKMeansList), clusters
of nearly redundant colors are avoided.

So you don’t end up with, say, 3 nearly-identical yellow clusters which are treated as unrelated just
because there’s a lot of yellow in your image; you just get a very large yellow cluster and empty
non-yellow bins.

Examples

Not run:
Takes >10 seconds if you run all examples
clusterList <- colordistance::getHistList(system.file("extdata",
"Heliconius/Heliconius_B", package="colordistance"), upper = rep(1, 3),
lower = rep(0.8, 3))

clusterList <- colordistance::getHistList(c(system.file("extdata",
"Heliconius/Heliconius_B", package="colordistance"), system.file("extdata",
"Heliconius/Heliconius_A", package="colordistance")), pausing = FALSE,
upper = rep(1, 3), lower = rep(0.8, 3))

clusterList <- colordistance::getHistList(system.file("extdata",
"Heliconius/Heliconius_B", package = "colordistance"), plotting = TRUE,
upper = rep(1, 3), lower = rep(0.8, 3))

End(Not run)

getImageHist Generate a 3D histogram based on color distribution in an image

Description

Computes a histogram in either RGB or HSV colorspace by sorting pixels into a specified number
of bins.

Usage

getImageHist(
image,
bins = 3,
bin.avg = TRUE,
defaultClusters = NULL,
lower = c(0, 0.55, 0),

getImageHist 15

upper = c(0.24, 1, 0.24),
as.vec = FALSE,
alpha.channel = TRUE,
norm.pix = FALSE,
plotting = TRUE,
hsv = FALSE,
title = "path",
bounds = c(0, 1),
...

)

Arguments

image Path to a valid image (PNG or JPG) or a loadImage object.

bins Number of bins for each channel OR a vector of length 3 with bins for each
channel. Bins=3 will result in 3^3 = 27 bins; bins=c(2, 2, 3) will result in
2*2*3=12 bins (2 red, 2 green, 3 blue), etc.

bin.avg Logical. Should the returned color clusters be the average of the pixels in that
bin (bin.avg=TRUE) or the center of the bin (FALSE)? If a bin is empty, the center
of the bin is returned as the cluster color regardless.

defaultClusters

Optional dataframe of default color clusters to be returned when a bin is empty.
If NULL, the geometric centers of the bins are used.

lower RGB or HSV triplet specifying the lower bounds for background pixels. De-
fault upper and lower bounds are set to values that work well for a bright green
background (RGB [0, 1, 0]).

upper RGB or HSV triplet specifying the upper bounds for background pixels. De-
fault upper and lower bounds are set to values that work well for a bright green
background (RGB [0, 1, 0]). Determining these bounds may take some trial
and error, but the following bounds may work for certain common background
colors:

• Black: lower=c(0, 0, 0); upper=c(0.1, 0.1, 0.1)
• White: lower=c(0.8, 0.8, 0.8); upper=c(1, 1, 1)
• Green: lower=c(0, 0.55, 0); upper=c(0.24, 1, 0.24)
• Blue: lower=c(0, 0, 0.55); upper=c(0.24, 0.24, 1)

If no background filtering is needed, set bounds to some non-numeric value
(NULL, FALSE, "off", etc); any non-numeric value is interpreted as NULL.

as.vec Logical. Should the bin sizes just be returned as a vector? Much faster if only
using chisqDistance for comparison metric.

alpha.channel Logical. If available, should alpha channel transparency be used to mask back-
ground? See removeBackground for more details.

norm.pix Logical. Should RGB or HSV cluster values be normalized using normalizeRGB?

plotting Logical. Should a histogram of the bin colors and sizes be plotted?

hsv Logical. Should HSV be used instead of RGB?

16 getImagePaths

title String for what to title the plots if plotting is on; defaults to the image name.

bounds Upper and lower limits for the channels; R reads in images with intensities on a
0-1 scale, but 0-255 is common.

... Optional arguments passed to the barplot function.

Details

If you choose 2 bins for each color channel, then each of R, G, and B will be divided into 2 bins
each, for a total of 2^3 = 8 bins.

Once all pixels have been binned, the function will return either the size of each bin, either in
number of pixels or fraction of total pixels, and the color of each bin, either as the geometric center
of the bin or as the average color of all pixels assigned to it.

For example, if you input an image of a red square and used 8 bins, all red pixels (RGB triplet of
[1, 0, 0]) would be assigned to the bin with R bounds (0.5, 1], G bounds [0, 0.5) and B bounds [0,
0.5). The average color of the bin would be [0.75, 0.25, 0.25], but the average color of the pixels
assigned to that bin would be [1, 0, 0]. The latter option is obviously more informative, but takes
longer (about 1.5-2x longer depending on the images).

Value

A vector or dataframe (depending on whether as.vec=T) of bin sizes and color values.

Examples

generate HSV histogram for a single image
colordistance::getImageHist(system.file("extdata",
"Heliconius/Heliconius_B/Heliconius_07.jpeg", package="colordistance"),
upper=rep(1, 3), lower=rep(0.8, 3), bins=c(8, 3, 3), hsv=TRUE, plotting=TRUE)

generate RGB histogram
colordistance::getImageHist(system.file("extdata",
"Heliconius/Heliconius_B/Heliconius_07.jpeg", package="colordistance"),
upper=rep(1, 3), lower=rep(0.8, 3), bins=2)

getImagePaths Fetch paths to all valid images in a given directory

Description

Find all valid image paths (PNG and JPG) in a directory (does not search subdirectories). Will
recover any image ending in .PNG, .JPG, or .JPEG, case-insensitive.

Usage

getImagePaths(path)

getKMeanColors 17

Arguments

path Path to directory in which to search for images. Absolute or relative filepaths
are fine.

Value

A vector of absolute filepaths to JPG and PNG images in the given directory.

Note

In the event that no compatible images are found in the directory, it returns a message to that effect
instead of an empty vector.

Examples

im.dir <- colordistance::getImagePaths(system.file("extdata",
"Heliconius/Heliconius_A", package="colordistance"))
Not run:
im.dir <- colordistance::getImagePaths("some/nonexistent/directory")

End(Not run)
im.dir <- colordistance::getImagePaths(getwd())

getKMeanColors Fit pixels to clusters using KMeans clustering

Description

Uses KMeans clustering to determine color clusters that minimize the sum of distances between
pixels and their assigned clusters. Useful for parsing common color motifs in an object.

Usage

getKMeanColors(
path,
n = 10,
sample.size = 20000,
plotting = TRUE,
lower = c(0, 0.55, 0),
upper = c(0.24, 1, 0.24),
iter.max = 50,
nstart = 5,
return.clust = TRUE,
color.space = "rgb",
from = "sRGB",
ref.white

)

https://en.wikipedia.org/wiki/K-means_clustering

18 getKMeanColors

Arguments

path Path to an image (JPG or PNG).

n Number of KMeans clusters to fit. Unlike getImageHist, this represents the
actual final number of bins, rather than the number of breaks in each channel.

sample.size Number of pixels to be randomly sampled from filtered pixel array for perform-
ing fit. If set to FALSE, all pixels are fit, but this can be time-consuming, espe-
cially for large images.

plotting Logical. Should the results of the KMeans fit (original image + histogram of
colors and bin sizes) be plotted?

lower RGB triplet specifying the lower bounds for background pixels. Default upper
and lower bounds are set to values that work well for a bright green background
(RGB [0, 1, 0]).

upper RGB triplet specifying the upper bounds for background pixels. Default upper
and lower bounds are set to values that work well for a bright green background
(RGB [0, 1, 0]). Determining these bounds may take some trial and error, but
the following bounds may work for certain common background colors:

• Black: lower=c(0, 0, 0); upper=c(0.1, 0.1, 0.1)
• White: lower=c(0.8, 0.8, 0.8); upper=c(1, 1, 1)
• Green: lower=c(0, 0.55, 0); upper=c(0.24, 1, 0.24)
• Blue: lower=c(0, 0, 0.55); upper=c(0.24, 0.24, 1)

If no background filtering is needed, set bounds to some non-numeric value
(NULL, FALSE, "off", etc); any non-numeric value is interpreted as NULL.

iter.max Inherited from kmeans. The maximum number of iterations allowed.

nstart Inherited from kmeans. How many random sets should be chosen?

return.clust Logical. Should clusters be returned? If FALSE, results are plotted but not re-
turned.

color.space The color space ("rgb", "hsv", or "lab") in which to cluster pixels.

from Display color space of image if clustering in CIE Lab space, probably either
"sRGB" or "Apple RGB", depending on your computer.

ref.white The reference white passed to convertColorSpace; must be specified if using
CIE Lab space. See convertColorSpace.

Value

A kmeans fit object.

Examples

colordistance::getKMeanColors(system.file("extdata",
"Heliconius/Heliconius_B/Heliconius_07.jpeg", package="colordistance"), n=3,
return.clust=FALSE, lower=rep(0.8, 3), upper=rep(1, 3))

getKMeansList 19

getKMeansList Get KMeans clusters for every image in a set

Description

Performs getKMeanColors on every image in a set of images and returns a list of kmeans fit objects,
where each dataframe contains the RGB coordinates of the clusters and the percentage of pixels in
the image assigned to that cluster.

Usage

getKMeansList(
images,
bins = 10,
sample.size = 20000,
plotting = FALSE,
lower = c(0, 0.55, 0),
upper = c(0.24, 1, 0.24),
iter.max = 50,
nstart = 5,
img.type = FALSE,
color.space = "rgb",
from = "sRGB",
ref.white

)

Arguments

images A character vector of directories, image paths, or a combination of both. Takes
either absolute or relative filepaths.

bins Number of KMeans clusters to fit. Unlike getImageHist, this represents the
actual final number of bins, rather than the number of breaks in each channel.

sample.size Number of pixels to be randomly sampled from filtered pixel array for perform-
ing fit. If set to FALSE, all pixels are fit, but this can be time-consuming, espe-
cially for large images.

plotting Logical. Should the results of the KMeans fit (original image + histogram of
colors and bin sizes) be plotted for each image?

lower RGB triplet specifying the lower bounds for background pixels. Default upper
and lower bounds are set to values that work well for a bright green background
(RGB [0, 1, 0]).

upper RGB triplet specifying the upper bounds for background pixels. Default upper
and lower bounds are set to values that work well for a bright green background
(RGB [0, 1, 0]). Determining these bounds may take some trial and error, but
the following bounds may work for certain common background colors:

• Black: lower=c(0, 0, 0); upper=c(0.1, 0.1, 0.1)

20 getLabHist

• White: lower=c(0.8, 0.8, 0.8); upper=c(1, 1, 1)
• Green: lower=c(0, 0.55, 0); upper=c(0.24, 1, 0.24)
• Blue: lower=c(0, 0, 0.55); upper=c(0.24, 0.24, 1)

If no background filtering is needed, set bounds to some non-numeric value
(NULL, FALSE, "off", etc); any non-numeric value is interpreted as NULL.

iter.max Inherited from kmeans. The maximum number of iterations allowed.

nstart Inherited from kmeans. How many random sets should be chosen?

img.type Logical. Should the image extension (.PNG or .JPG) be retained in the list
names?

color.space The color space ("rgb", "hsv", or "lab") in which to cluster pixels.

from Original color space of images if clustering in CIE Lab space, probably either
"sRGB" or "Apple RGB", depending on your computer.

ref.white The reference white passed to convertColorSpace; must be specified if using
CIE Lab space. See convertColorSpace.

Value

A list of kmeans fit objects, where the list element names are the original image names.

Examples

Not run:
Takes a few seconds to run
kmeans_list <- colordistance::getKMeansList(dir(system.file("extdata",
"Heliconius/", package="colordistance"), full.names=TRUE), bins=3,
lower=rep(0.8, 3), upper=rep(1, 3), plotting=TRUE)

End(Not run)

getLabHist Generate a 3D histogram based on CIE Lab color coordinates in an
image

Description

Computes a histogram in CIE Lab color space by sorting pixels into specified bins.

Usage

getLabHist(
image,
bins = 3,
sample.size = 10000,
ref.white,
from = "sRGB",

getLabHist 21

bin.avg = TRUE,
alpha.channel = TRUE,
as.vec = FALSE,
plotting = TRUE,
lower = c(0, 0.55, 0),
upper = c(0.24, 1, 0.24),
title = "path",
a.bounds = c(-128, 127),
b.bounds = c(-128, 127),
...

)

Arguments

image Path to a valid image (PNG or JPG) or a loadImage object.

bins Number of bins for each channel OR a vector of length 3 with bins for each
channel. Bins = 3 will result in 3^3 = 27 bins; bins = c(2, 2, 3) will result in 2 *
2 * 3 = 12 bins (2 L, 2 a, 3 b), etc.

sample.size Numeric. How many pixels should be randomly sampled from the non-background
part of the image and converted into CIE Lab coordinates? If non-numeric, all
pixels will be converted, but this can be very slow (see details).

ref.white Reference white passed to convertColorSpace. Unlike convertColor, no de-
fault is provided. See details for explanation of different reference whites.

from Original color space of image, probably either "sRGB" or "Apple RGB", de-
pending on your computer.

bin.avg Logical. Should the returned color clusters be the average of the pixels in that
bin (bin.avg=TRUE) or the center of the bin (FALSE)? If a bin is empty, the center
of the bin is returned as the cluster color regardless.

alpha.channel Logical. If available, should alpha channel transparency be used to mask back-
ground? See removeBackground for more details.

as.vec Logical. Should the bin sizes just be returned as a vector? Much faster if only
using chisqDistance for comparison metric.

plotting Logical. Should a histogram of the bin colors and sizes be plotted?

lower, upper RGB or HSV triplets specifying the lower and upper bounds for background
pixels. Default upper and lower bounds are set to values that work well for a
bright green background (RGB [0, 1, 0]). Determining these bounds may take
some trial and error, but the following bounds may work for certain common
background colors:

• Black: lower=c(0, 0, 0); upper=c(0.1, 0.1, 0.1)
• White: lower=c(0.8, 0.8, 0.8); upper=c(1, 1, 1)
• Green: lower=c(0, 0.55, 0); upper=c(0.24, 1, 0.24)
• Blue: lower=c(0, 0, 0.55); upper=c(0.24, 0.24, 1)

If no background filtering is needed, set bounds to some non-numeric value
(NULL, FALSE, "off", etc); any non-numeric value is interpreted as NULL.

title String for what the title the plot if plotting is on; defaults to the image name.

22 getLabHist

a.bounds, b.bounds
Numeric ranges for the a (green-red) and b (blue-yellow) channels of Lab color
space. Technically, a and b have infinite range, but in practice nearly all values
fall between -128 and 127 (the default). Many images will have an even nar-
rower range than this, depending on the lighting conditions and conversion; set-
ting narrower ranges will result in finer-scale binning, without generating empty
bins at the edges of the channels.

... Additional arguments passed to barplot.

Details

getLabHist uses convertColorSpace to convert pixels into CIE Lab coordinates, which requires
a references white. There are seven CIE standardized illuminants available in colordistance (A,
B, C, E, and D50, D55, and D65), but the most common are:

• "A": Standard incandescent lightbulb

• "D65": Average daylight

• "D50": Direct sunlight

Color conversions will be highly dependent on the reference white used, which is why no default
is provided. Users should look into standard illuminants to choose an appropriate reference for a
dataset.

The conversion from RGB to a standardized color space (XYZ, Lab, or Luv) is approximate, non-
linear, and relatively time-consuming. Converting a large number of pixels can be computationally
expensive, so convertColorSpace will randomly sample a specified number of rows to reduce the
time. The default sample size, 10,000 rows, takes about 1 second to convert from sRGB to Lab
space on an early 2015 Macbook with 8 GB of RAM. Time scales about linearly with number of
rows converted.

Unlike RGB or HSV color spaces, the three channels of CIE Lab color space do not all range
between 0 and 1; instead, L (luminance) is always between 0 and 100, and the a (green-red) and b
(blue-yellow) channels generally vary between -128 and 127, but usually occupy a narrower range
depending on the reference white. To achieve the best results, ranges for a and b should be restricted
to avoid generating empty bins.

Value

A vector or dataframe (depending on whether as.vec = TRUE) of bin sizes and color coordinates.

Examples

path <- system.file("extdata", "Heliconius/Heliconius_B/Heliconius_07.jpeg",
package="colordistance")
getLabHist(path, ref.white = "D65", bins = c(2, 3, 3), lower = rep(0.8, 3),
upper = rep(1, 3), sample.size = 1000, ylim = c(0, 1))

https://en.wikipedia.org/wiki/Standard_illuminant

getLabHistList 23

getLabHistList Generate a list of cluster sets in CIE Lab color space

Description

Applies getLabHist to every image in a provided set of image paths and/or directories containing
images.

Usage

getLabHistList(
images,
bins = 3,
sample.size = 10000,
ref.white,
from = "sRGB",
bin.avg = TRUE,
as.vec = FALSE,
plotting = FALSE,
pausing = TRUE,
lower = c(0, 0.55, 0),
upper = c(0.24, 1, 0.24),
alpha.channel = TRUE,
title = "path",
a.bounds = c(-128, 127),
b.bounds = c(-128, 127),
...

)

Arguments

images Character vector of directories, image paths, or both.

bins Number of bins for each channel OR a vector of length 3 with bins for each
channel. Bins = 3 will result in 3^3 = 27 bins; bins = c(2, 2, 3) will result in 2 *
2 * 3 = 12 bins (2 L, 2 a, 3 b), etc.

sample.size Numeric. How many pixels should be randomly sampled from the non-background
part of the image and converted into CIE Lab coordinates? If non-numeric, all
pixels will be converted, but this can be very slow (see details).

ref.white Reference white passed to convertColorSpace. Unlike convertColor, no de-
fault is provided. See details for explanation of different reference whites.

from Original color space of image, probably either "sRGB" or "Apple RGB", de-
pending on your computer.

bin.avg Logical. Should the returned color clusters be the average of the pixels in that
bin (bin.avg=TRUE) or the center of the bin (FALSE)? If a bin is empty, the center
of the bin is returned as the cluster color regardless.

24 getLabHistList

as.vec Logical. Should the bin sizes just be returned as a vector? Much faster if only
using chisqDistance for comparison metric.

plotting Logical. Should a histogram of the bin colors and sizes be plotted?

pausing Logical. If plotting=T, should the function pause between graphing and wait
for user to hit [enter] before continuing? Useful for data/histogram inspection.

lower, upper RGB or HSV triplets specifying the lower and upper bounds for background
pixels. Default upper and lower bounds are set to values that work well for a
bright green background (RGB [0, 1, 0]). Determining these bounds may take
some trial and error, but the following bounds may work for certain common
background colors:

• Black: lower=c(0, 0, 0); upper=c(0.1, 0.1, 0.1)
• White: lower=c(0.8, 0.8, 0.8); upper=c(1, 1, 1)
• Green: lower=c(0, 0.55, 0); upper=c(0.24, 1, 0.24)
• Blue: lower=c(0, 0, 0.55); upper=c(0.24, 0.24, 1)

If no background filtering is needed, set bounds to some non-numeric value
(NULL, FALSE, "off", etc); any non-numeric value is interpreted as NULL.

alpha.channel Logical. If available, should alpha channel transparency be used to mask back-
ground? See removeBackground for more details.

title String for what the title the plot if plotting is on; defaults to the image name.
a.bounds, b.bounds

Numeric ranges for the a (green-red) and b (blue-yellow) channels of Lab color
space. Technically, a and b have infinite range, but in practice nearly all values
fall between -128 and 127 (the default). Many images will have an even nar-
rower range than this, depending on the lighting conditions and conversion; set-
ting narrower ranges will result in finer-scale binning, without generating empty
bins at the edges of the channels.

... Additional arguments passed to barplot.

Details

getLabHist uses convertColorSpace to convert pixels into CIE Lab coordinates, which requires
a references white. There are seven CIE standardized illuminants available in colordistance (A,
B, C, E, and D50, D55, and D65), but the most common are:

• "A": Standard incandescent lightbulb

• "D65": Average daylight

• "D50": Direct sunlight

Color conversions will be highly dependent on the reference white used, which is why no default
is provided. Users should look into standard illuminants to choose an appropriate reference for a
dataset.

Unlike RGB or HSV color spaces, the three channels of CIE Lab color space do not all range
between 0 and 1; instead, L (luminance) is always between 0 and 100, and the a (green-red) and
b (blue-yellow) channels generally vary between -128 and 127, but usually occupy a narrower
range depending on the reference white. The exception is reference white A (standard incandescent
lighting), which tends to have lower values when converting with convertColor.

https://en.wikipedia.org/wiki/Standard_illuminant

heatmapColorDistance 25

Value

A list of getLabHist dataframes, 1 per image, named by image name.

Examples

images <- system.file("extdata", "Heliconius/Heliconius_B",
package="colordistance")

colordistance::getLabHistList(images, bins = 2, sample.size = 1000, ref.white
= "D65", plotting = TRUE, pausing = FALSE, lower = rep(0.8, 3), upper =
rep(1, 3), a.bounds = c(-100, 100), b.bounds = c(-127, 100), ylim = c(0, 1))

heatmapColorDistance Plot a heatmap of a distance matrix

Description

Plots a heatmap of a symmetrical distance matrix in order to visualize similarity/dissimilarity in
scores. Values are clustered by similarity using hclust.

Usage

heatmapColorDistance(
clusterList_or_matrixObject,
main = NULL,
col = "default",
margins = c(6, 8),
...

)

Arguments

clusterList_or_matrixObject

Either a list of identically sized dataframes with 4 columns each (3 color chan-
nels + Pct) as output by extractClusters or getHistList, or a symmetrical
distance matrix as output by getColorDistanceMatrix.

main Title for heatmap plot.

col Color scale for heatmap from low to high. Default is colorRampPalette(c("royalblue4",
"ghostwhite", "violetred2"))(299), where pink is more dissimilar and blue
is more similar.

margins Margins for column and row labels.

... Additional arguments passed on to heatmap.2.

Value

Heatmap representation of distance matrix.

26 imageClusterPipeline

Examples

Not run:
Takes a few seconds to run
cluster.list <- colordistance::getHistList(dir(system.file("extdata",
"Heliconius/", package="colordistance"), full.names=TRUE), lower=rep(0.8, 3),
upper=rep(1, 3))

CDM <- colordistance::getColorDistanceMatrix(cluster.list, plotting=FALSE)

colordistance::heatmapColorDistance(CDM, main="Heliconius color similarity")
colordistance::heatmapColorDistance(cluster.list,
col=colorRampPalette(c("red", "cyan", "blue"))(n=299))

End(Not run)

imageClusterPipeline Generate and plot a color distance matrix from a set of images

Description

Takes images, computes color clusters for each image, and calculates distance matrix/dendrogram
from those clusters.

Usage

imageClusterPipeline(
images,
cluster.method = "hist",
distance.method = "emd",
lower = c(0, 140/255, 0),
upper = c(60/255, 1, 60/255),
hist.bins = 3,
kmeans.bins = 27,
bin.avg = TRUE,
norm.pix = FALSE,
plot.bins = FALSE,
pausing = TRUE,
color.space = "rgb",
ref.white,
from = "sRGB",
bounds = c(0, 1),
sample.size = 20000,
iter.max = 50,
nstart = 5,
img.type = FALSE,
ordering = "default",
size.weight = 0.5,

imageClusterPipeline 27

color.weight = 0.5,
plot.heatmap = TRUE,
return.distance.matrix = TRUE,
save.tree = FALSE,
save.distance.matrix = FALSE,
a.bounds = c(-127, 128),
b.bounds = c(-127, 128)

)

Arguments

images Character vector of directories, image paths, or both.
cluster.method Which method for getting color clusters from each image should be used? Must

be either "hist" (predetermined bins generated by dividing each channel with
equidistant bounds; calls getHistList) or "kmeans" (determine clusters using
kmeans fitting on pixels; calls getKMeansList).

distance.method

One of four possible comparison methods for calculating the color distances:
"emd" (uses EMDistance, recommended), "chisq" (uses chisqDistance), "color.dist"
(uses colorDistance; not appropriate if bin.avg=F), or "weighted.pairs"
(weightedPairsDistance).

lower RGB or HSV triplet specifying the lower bounds for background pixels. De-
fault upper and lower bounds are set to values that work well for a bright green
background (RGB [0, 1, 0]).

upper RGB or HSV triplet specifying the upper bounds for background pixels. De-
fault upper and lower bounds are set to values that work well for a bright green
background (RGB [0, 1, 0]). Determining these bounds may take some trial
and error, but the following bounds may work for certain common background
colors:

• Black: lower=c(0, 0, 0); upper=c(0.1, 0.1, 0.1)
• White: lower=c(0.8, 0.8, 0.8); upper=c(1, 1, 1)
• Green: lower=c(0, 0.55, 0); upper=c(0.24, 1, 0.24)
• Blue: lower=c(0, 0, 0.55); upper=c(0.24, 0.24, 1)

If no background filtering is needed, set bounds to some non-numeric value
(NULL, FALSE, "off", etc); any non-numeric value is interpreted as NULL.

hist.bins Only applicable if cluster.method="hist". Number of bins for each channel
OR a vector of length 3 with bins for each channel. Bins=3 will result in 3^3 =
27 bins; bins=c(2, 2, 3) will result in 2*2*3=12 bins (2 red, 2 green, 3 blue), etc.
Passed to getHistList.

kmeans.bins Only applicable if cluster.method="kmeans". Number of KMeans clusters to
fit. Unlike getImageHist, this represents the actual final number of bins, rather
than the number of breaks in each channel.

bin.avg Logical. Should the color clusters used for the distance matrix be the average of
the pixels in that bin (bin.avg=TRUE) or the center of the bin (FALSE)? If a bin
is empty, the center of the bin is returned as the cluster color regardless. Only
applicable if cluster.method="hist", since kmeans clusters are at the center
of their assigned pixel clouds by definition.

28 imageClusterPipeline

norm.pix Logical. Should RGB or HSV cluster values be normalized using normalizeRGB?
plot.bins Logical. Should the bins for each image be plotted as they are calculated?
pausing Logical. If plot.bins=TRUE, pause and wait for user keystroke before plotting

bins for next image?
color.space The color space ("rgb", "hsv", or "lab") in which to plot pixels.
ref.white The reference white passed to convertColorSpace; must be specified if using

color.space = "lab".
from Display color space of image if clustering in CIE Lab space, probably either

"sRGB" or "Apple RGB", depending on your computer.
bounds Upper and lower limits for the channels; R reads in images with intensities on a

0-1 scale, but 0-255 is common.
sample.size Only applicable if cluster.method="kmeans". Number of pixels to be ran-

domly sampled from filtered pixel array for performing fit. If set to FALSE,
all pixels are fit, but this can be time-consuming, especially for large images.
Passed to getKMeansList.

iter.max Only applicable if cluster.method="kmeans". Inherited from kmeans. The
maximum number of iterations allowed during kmeans fitting. Passed to getKMeansList.

nstart Only applicable if cluster.method="kmeans". Inherited from kmeans. How
many random sets should be chosen? Passed to getKMeansList.

img.type Logical. Should file extensions be retained with labels?
ordering Logical if not left as "default". Should the color clusters in the list be reordered

to minimize the distances between the pairs? If left as default, ordering depends
on distance method: "emd" and "chisq" do not order clusters ("emd" orders on
a case-by-case in the EMDistance function itself and reordering by size simi-
larity would make chi-squared meaningless); "color.dist" and "weighted.pairs"
use ordering. To override defaults, set to either T (for ordering) or F (for no
ordering).

size.weight Weight of size similarity in determining overall score and ordering (if ordering=T).
color.weight Weight of color similarity in determining overall score and ordering (if ordering=T).

Color and size weights do not necessarily have to sum to 1.
plot.heatmap Logical. Should a heatmap of the distance matrix be plotted?
return.distance.matrix

Logical. Should the distance matrix be returned to the R environment or just
plotted?

save.tree Either logical or a filepath for saving the tree; default if set to TRUE is to save in
current working directory as "ColorTree.newick".

save.distance.matrix

Either logical or filepath for saving distance matrix; default if set to TRUE is to
save in current working directory as "ColorDistanceMatrix.csv"

a.bounds, b.bounds
Passed to getLabHistList.Numeric ranges for the a (green-red) and b (blue-
yellow) channels of Lab color space. Technically, a and b have infinite range,
but in practice nearly all values fall between -128 and 127 (the default). Many
images will have an even narrower range than this, depending on the lighting
conditions and conversion; setting narrower ranges will result in finer-scale bin-
ning, without generating empty bins at the edges of the channels.

loadImage 29

Value

Color distance matrix, heatmap, and saved distance matrix and tree files if saving is TRUE.

Note

This is the fastest way to get a distance matrix for color similarity starting from a folder of im-
ages. Essentially, it just calls in a series of other package functions in order: input images ->
getImagePaths -> getHistList or getKMeansList followed by extractClusters -> getColorDistanceMatrix
-> plotting -> return/save distance matrix. Sort of railroads you, but good for testing different com-
binations of clustering methods and distance metrics.

Examples

Not run:
colordistance::imageClusterPipeline(dir(system.file("extdata", "Heliconius/",
package="colordistance"), full.names=TRUE), color.space="hsv", lower=rep(0.8,
3), upper=rep(1, 3), cluster.method="hist", distance.method="emd",
hist.bins=3, plot.bins=TRUE, save.tree="example_tree.newick",
save.distance.matrix="example_DM.csv")

End(Not run)

loadImage Import image and generate filtered 2D pixel array(s)

Description

Imports a single image and returns a list with the original image as a 3D array, a 2D matrix with
background pixels removed, and the absolute path to the original image.

Usage

loadImage(
path,
lower = c(0, 0.55, 0),
upper = c(0.24, 1, 0.24),
hsv = TRUE,
CIELab = FALSE,
sample.size = 1e+05,
ref.white = NULL,
alpha.channel = TRUE,
alpha.message = FALSE

)

30 loadImage

Arguments

path Path to image (a string).

lower RGB or HSV triplet specifying the lower bounds for background pixels. De-
fault upper and lower bounds are set to values that work well for a bright green
background (RGB [0, 1, 0]).

upper RGB or HSV triplet specifying the upper bounds for background pixels. De-
fault upper and lower bounds are set to values that work well for a bright green
background (RGB [0, 1, 0]). Determining these bounds may take some trial
and error, but the following bounds may work for certain common background
colors:

• Black: lower=c(0, 0, 0); upper=c(0.1, 0.1, 0.1)
• White: lower=c(0.8, 0.8, 0.8); upper=c(1, 1, 1)
• Green: lower=c(0, 0.55, 0); upper=c(0.24, 1, 0.24)
• Blue: lower=c(0, 0, 0.55); upper=c(0.24, 0.24, 1)

If no background filtering is needed, set bounds to some non-numeric value
(NULL, FALSE, "off", etc); any non-numeric value is interpreted as NULL.

hsv Logical. Should HSV pixel array also be calculated? Setting to FALSE will shave
some time off the analysis, but not much (a few microseconds per image).

CIELab Logical. Should CIEL*a*b color space pixels be calculated from RGB? Re-
quires specification of a reference white (see details).

sample.size Number of pixels to be randomly sampled from filtered pixel array for conver-
sion. If not numeric, all pixels are converted.

ref.white String; white reference for converting from RGB to CIEL*a*b color space. Ac-
cepts any of the standard white references for convertColor (see details).

alpha.channel Logical. If available, should alpha channel transparency be used to mask back-
ground? See removeBackground for more details.

alpha.message Logical. Output a message if using alpha channel transparency to mask back-
ground? Helpful for troubleshooting with PNGs.

Details

The upper and lower limits for background pixel elimination set the inclusive bounds for which
pixels should be ignored for the 2D arrays; while all background pixels are ideally a single color,
images photographed against "uniform" backgrounds often contain some variation, and even seg-
mentation done with photo editing software will produce some variance as a result of image com-
pression.

The upper and lower bounds represent cutoffs: any pixel for which the first channel falls between
the first upper and lower bounds, the second channel falls between the second upper and lower
bounds, and the third channel falls between the third upper and lower bounds, will be ignored. For
example, if you have a green pixel with RGB channel values [0.1, 0.9, 0.2], and your upper and
lower bounds were (0.2, 1, 0.2) and (0, 0.6, 0) respectively, the pixel would be ignored because 0
<= 0.1 <= 0.2, 0.6 <= 0.9 <= 1, and 0 <= 0.2 <= 0.2. But a pixel with the RGB channel values [0.3,
0.9, 0.2] would not be considered background because 0.3 >= 0.2.

CIEL*a*b color space requires a reference ’white light’ color (dimly and brightly lit photographs
of the same object will have very different RGB palettes, but similar Lab palettes if appropriate

normalizeRGB 31

white references are used). The idea here is that the apparent colors in an image depend not just on
the "absolute" color of an object (whatever that means), but also on the available light in the scene.
There are seven CIE standardized illuminants available in colordistance (A, B, C, E, and D50,
D55, and D60), but the most common are:

• "A": Standard incandescent lightbulb

• "D65": Average daylight

• "D50": Direct sunlight

Color conversions will be highly dependent on the reference white used, which is why no default
is provided. Users should look into standard illuminants to choose an appropriate reference for a
dataset.

Value

A list with original image ($original.rgb, 3D array), 2D matrix with background pixels removed
($filtered.rgb.2d and $filtered.hsv.2d), and path to the original image ($path).

Note

The 3D array is useful for displaying the original image, while the 2D arrays (RGB and HSV) are
treated as rows of data for clustering in the rest of the package.

Examples

loadedImg <- colordistance::loadImage(system.file("extdata",
"Heliconius/Heliconius_A/Heliconius_01.jpeg", package="colordistance"),
upper=rep(1, 3), lower=rep(0.8, 3))

loadedImgNoHSV <- colordistance::loadImage(system.file("extdata",
"Heliconius/Heliconius_A/Heliconius_01.jpeg", package="colordistance"),
upper=rep(1, 3), lower=rep(0.8, 3), hsv=FALSE)

normalizeRGB Normalize pixel RGB ratios

Description

Converts clusters from raw channel intensity to their fraction of the intensity for that cluster

Usage

normalizeRGB(extractClustersObject)

https://en.wikipedia.org/wiki/Standard_illuminant

32 orderClusters

Arguments

extractClustersObject

A list of color clusters such as those returned by extractClusters or getHistList.
List must contain identically sized dataframes with color coordinates (R, G, B
or H, S, V) as the first three columns.

Value

A list of the same size and structure as the input list, but with the cluster normalized as described.

Note

This is a useful option if your images have a lot of variation in lighting, but obviously comes at the
cost of reducing variation (if darker and lighter colors are meaningful sources of variation in the
dataset).

For example, a bright yellow (R=1, G=1, B=0) and a darker yellow (R=0.8, G=0.8, B=0) both have
50% red, 50% green, and 0% blue, so their normalized values would be equivalent.

A similar but less harsh alternative would be to use HSV rather than RGB for pixel binning and
color similarity clustering by setting hsv=T in clustering functions and specifying a low number of
’value’ bins (e.g. bins=c(8, 8, 2)).

Examples

cluster.list <- colordistance::getKMeansList(c(system.file("extdata",
"Heliconius/Heliconius_A", package="colordistance"), lower=rep(0.8, 3),
upper=rep(1, 3)))
cluster.list <- colordistance::extractClusters(cluster.list)
colordistance:::normalizeRGB(cluster.list)

orderClusters Order color clusters to minimize overall color distance between pairs

Description

Reorders clusters to minimize color distance using the Hungarian algorithm as implemented by
solve_LSAP.

Usage

orderClusters(extractClustersObject)

Arguments

extractClustersObject

A list of color clusters such as those returned by extractClusters or getHistList.
List must contain identically sized dataframes with color coordinates (R, G, B
or H, S, V) as the first three columns.

https://en.wikipedia.org/wiki/Hungarian_algorithm

pause 33

Details

Briefly: Euclidean distances between every possible pair of clusters across two dataframes are
calculated, and pairs of clusters are chosen in order to minimize the total sum of color distances
between the cluster pairs (i.e. A1-B1, A2-B2, etc).

For example, if dataframe A has a black cluster, a white cluster, and a blue cluster, in that order, and
dataframe B has a white cluster, a blue cluster, and a grey cluster, in that order, the final pairs might
be A1-B3 (black and grey), A2-B2 (blue and blue), and A3-B1 (white and white).

Rows are reordered so that paired rows are in the same row index (in the example, dataframe B
would be reshuffled to go grey, blue, white instead of white, grey, blue).

Value

A list with identical data to the input list, but with rows in each dataframe reordered to minimize
color distances per cluster pair.

Examples

cluster.list <- colordistance::getKMeansList(c(system.file("extdata",
"Heliconius/Heliconius_A", package="colordistance"), lower=rep(0.8, 3),
upper=rep(1, 3)))
cluster.list <- colordistance::extractClusters(cluster.list)
colordistance:::orderClusters(cluster.list)

pause Pause and wait for user input

Description

Tiny little function wrapper, mostly used for looping or when several plots are output by a single
function. Waits for user keystroke to move on to next image or exit.

Usage

pause()

Examples

for (i in c(1:5)) {
print(i)
if (i < 5) {

colordistance:::pause()
}

}

34 plotClusters

plotClusters Plot clusters in 3D color space

Description

Interactive, 3D plot_ly plots of cluster sizes and colors for each image in a list of cluster dataframes
in order to visualize cluster output.

Usage

plotClusters(
cluster.list,
color.space = "rgb",
p = "all",
pausing = TRUE,
ref.white,
to = "sRGB"

)

Arguments

cluster.list A list of identically sized dataframes with 4 columns each (R, G, B, Pct or H, S,
V, Pct) as output by extractClusters or getHistList.

color.space The color space ("rgb", "hsv", or "lab") in which to plot pixels.

p Numeric vector of indices for which elements to plot; otherwise each set of
clusters is plotted in succession.

pausing Logical. Should the function pause and wait for user keystroke before plotting
the next plot?

ref.white The reference white passed to convertColorSpace; must be specified if using
color.space = "lab".

to Display color space of image if clustering in CIE Lab space, probably either
"sRGB" or "Apple RGB", depending on your computer.

Value

A 3D plot_ly plot of cluster sizes in the specified colorspace for each cluster dataframe provided.

Examples

Not run:
Takes >10 seconds
cluster.list <- colordistance::getHistList(dir(system.file("extdata",
"Heliconius/", package="colordistance"), full.names=TRUE), plotting=FALSE,
lower=rep(0.8, 3), upper=rep(1, 3))

colordistance::plotClusters(cluster.list, p=c(1:3, 7:8), pausing=FALSE)

plotClustersMulti 35

clusterListHSV <- colordistance::getHistList(dir(system.file("extdata",
"Heliconius/", package="colordistance"), full.names=TRUE), hsv=TRUE,
plotting=FALSE, lower=rep(0.8, 3), upper=rep(1, 3))

colordistance::plotClusters(clusterListHSV, p=c(1:3, 7:8), hsv=TRUE,
pausing=FALSE)

End(Not run)

plotClustersMulti Plot several different cluster sets together

Description

Plots cluster sets from several different dataframes on a single plot for easy comparison.

Usage

plotClustersMulti(
cluster.list,
color.space = "rgb",
p = "all",
title = "",
ref.white,
to = "sRGB"

)

Arguments

cluster.list A list of identically sized dataframes with 4 columns each as output by extractClusters,
getLabHistList, or getHistList.

color.space The color space ("rgb", "hsv", or "lab") in which to plot pixels.

p Numeric vector of indices for which elements to plot; otherwise all of the cluster
sets provided will be plotted together.

title Optional title for the plot.

ref.white The reference white passed to convertColorSpace; must be specified if using
color.space = "lab".

to Display color space of image if clustering in CIE Lab space, probably either
"sRGB" or "Apple RGB", depending on your computer.

Value

A single plot_ly plot of every cluster in a list of cluster sets. Each cluster is colored by cluster
color, proportional to cluster size, and labeled according to the image from which it originated.

36 plotHist

Note

Each cluster plotted is colored according to its actual color, and labeled according to the image from
which it originated.

Examples

Not run:
Takes >10 seconds
cluster.list <- colordistance::getHistList(dir(system.file("extdata",
"Heliconius/", package="colordistance"), full.names=TRUE), plotting=FALSE,
lower=rep(0.8, 3), upper=rep(1, 3))

colordistance::plotClustersMulti(cluster.list, p=c(1:4), title="Orange and
black Heliconius")

colordistance::plotClustersMulti(cluster.list, p=c(5:8), title="Black, yellow,
and red Heliconius")

clusterListHSV <- colordistance::getHistList(dir(system.file("extdata",
"Heliconius/", package="colordistance"), full.names=TRUE), hsv=TRUE,
plotting=FALSE, lower=rep(0.8, 3), upper=rep(1, 3))

colordistance::plotClustersMulti(clusterListHSV, p=c(1:3, 7:8), hsv=TRUE)

End(Not run)

plotHist Color histogram of binned image

Description

Plots a color histogram from a dataframe as returned by getImageHist, getHistList, or extractClusters.
Bars are colored according to the color of the bin.

Usage

plotHist(
histogram,
pausing = TRUE,
color.space = "rgb",
ref.white,
from = "sRGB",
main = "default",
...

)

plotImage 37

Arguments

histogram A single dataframe or a list of dataframes as returned by getLabHist, getLabHistList,
or extractClusters. First three columns must be color coordinates and fourth
column must be cluster size.

pausing Logical. Pause and wait for keystroke before plotting the next histogram?

color.space The color space ("rgb", "hsv", or "lab") in which to plot cluster histogram.

ref.white The reference white passed to convertColorSpace; must be specified if using
CIE Lab space. See convertColorSpace.

from Display color space of image if clustering in CIE Lab space, probably either
"sRGB" or "Apple RGB", depending on your computer.

main Title for plot. If "default", the name of the cluster histogram is used.

... Optional arguments passed to the barplot function.

Examples

color_df <- as.data.frame(matrix(rep(seq(0, 1, length.out=3), 3), nrow=3,
ncol=3))

color_df$Pct <- c(0.2, 0.5, 0.3)

colordistance::plotHist(color_df, main="Example plot")

plotImage Display an image in a plot window

Description

Plots an image as an image.

Usage

plotImage(img)

Arguments

img Either a path to an image or a loadImage object.

Details

Redundant, but a nice sanity check. Used in a few other functions in colordistance package.
Takes either a path to an image (RGB or PNG) or an image object as read in by loadImage.

Value

A plot of the provided image in the current plot window.

38 plotPixels

Examples

colordistance::plotImage(system.file("extdata",
"Heliconius/Heliconius_A/Heliconius_01.jpeg", package="colordistance"))
colordistance::plotImage(loadImage(system.file("extdata",
"Heliconius/Heliconius_A/Heliconius_01.jpeg", package="colordistance"),
lower=rep(0.8, 3), upper=rep(1, 3)))

plotPixels Plot pixels in color space

Description

Plots non-background pixels according to their color coordinates, and colors them according to their
RGB or HSV values. Dimensions are either RGB or HSV depending on flags.

Usage

plotPixels(
img,
n = 10000,
lower = c(0, 0.55, 0),
upper = c(0.25, 1, 0.25),
color.space = "rgb",
ref.white = NULL,
pch = 20,
main = "default",
from = "sRGB",
xlim = "default",
ylim = "default",
zlim = "default",
...

)

Arguments

img Either a path to an image or a loadImage object.

n Number of randomly selected pixels to plot; recommend <20000 for speed. If
n exceeds the number of non-background pixels in the image, all pixels are
plotted. If n is not numeric, all pixels are plotted.

lower RGB or HSV triplet specifying the lower bounds for background pixels. De-
fault upper and lower bounds are set to values that work well for a bright green
background (RGB [0, 1, 0]).

upper RGB or HSV triplet specifying the upper bounds for background pixels. De-
fault upper and lower bounds are set to values that work well for a bright green
background (RGB [0, 1, 0]). Determining these bounds may take some trial
and error, but the following bounds may work for certain common background
colors:

plotPixels 39

• Black: lower=c(0, 0, 0); upper=c(0.1, 0.1, 0.1)
• White: lower=c(0.8, 0.8, 0.8); upper=c(1, 1, 1)
• Green: lower=c(0, 0.55, 0); upper=c(0.24, 1, 0.24)
• Blue: lower=c(0, 0, 0.55); upper=c(0.24, 0.24, 1)

If no background filtering is needed, set bounds to some non-numeric value
(NULL, FALSE, "off", etc); any non-numeric value is interpreted as NULL.

color.space The color space ("rgb", "hsv", or "lab") to use for plotting.

ref.white The reference white passed to convertColor; must be specified if img does not
already contain CIE Lab pixels. See convertColorSpace.

pch Passed to scatterplot3d.

main Plot title. If left as "default", image name is used.

from Original color space of image if plotting in CIE Lab space, probably either
"sRGB" or "Apple RGB", depending on your computer.

xlim, ylim, zlim Ranges for the X, Y, and Z axes. If "default", the widest ranges for each axis
according to the specified color space (0-1 for RGB and HSV, 0-100 for L of
Lab, -128-127 for a and b of Lab) are used.

... Optional parameters passed to scatterplot3d.

Value

3D plot of pixels in either RGB or HSV color space, colored according to their color in the image.
Uses scatterplot3d function.

Note

If n is not numeric, then all pixels are plotted, but this is not recommended. Unless the image has a
low pixel count, it takes much longer, and plotting this many points in the plot window can obscure
important details.

There are seven CIE standardized illuminants available in colordistance (A, B, C, E, and D50,
D55, and D65), but the most common are:

• "A": Standard incandescent lightbulb

• "D65": Average daylight

• "D50": Direct sunlight

Examples

colordistance::plotPixels(system.file("extdata",
"Heliconius/Heliconius_B/Heliconius_07.jpeg", package="colordistance"),
n=20000, upper=rep(1, 3), lower=rep(0.8, 3), color.space = "rgb", angle = -45)

40 removeBackground

removeBackground Remove background pixels in image

Description

Take an image array (from readPNG or jpeg{readJPEG}) and remove the background pixels based
on transparency (if a PNG with transparency) or color boundaries.

Usage

removeBackground(
img,
lower = NULL,
upper = NULL,
quietly = FALSE,
alpha.channel = TRUE

)

Arguments

img Image array, either output from readPNG or jpeg{readJPEG}.

lower, upper RGB or HSV triplets specifying the bounds for background pixels. See loadImage.

quietly Logical. Display a message if using transparency?

alpha.channel Logical. If available, should alpha channel transparency be used to mask back-
ground? See details.

Details

If alpha.channel = TRUE, transparency takes precedence over color masking. If you provide a
PNG with any pixels with alpha < 1, removeBackground ignores any lower and upper color
boundaries and assumes transparent pixels are background. If all pixels are opaque (alpha = 1),
color masking will apply.

Value

A list with a 3-dimensional RGB array and a 2-dimensional array of non-background pixels with R,
G, B columns.

Examples

remove background by transparency
img_path <- system.file("extdata/chrysochroa_NPL.png",
package = "colordistance")

img_array <- png::readPNG(img_path)

img_filtered <- removeBackground(img_array)

scatter3dclusters 41

remove background by color
img_path <- dir(system.file("extdata/Heliconius",
package = "colordistance"),
recursive = TRUE, full.names = TRUE)[1]

img_array <- jpeg::readJPEG(img_path)

img_filtered <- removeBackground(img_array,
lower = rep(0.8, 3), upper = rep(1, 3))

scatter3dclusters Plot 3D clusters in a 2D plot

Description

Uses scatterplot3d to plot clusters in color space.

Usage

scatter3dclusters(
clusters,
color.space,
ref.white = "D65",
xlim = "default",
ylim = "default",
zlim = "default",
main = "Color clusters",
scaling = 10,
opacity = 0.9,
plus = 0.01,
...

)

Arguments

clusters A single dataframe or a list of dataframes as returned by getLabHist, getLabHistList,
or extractClusters. First three columns must be color coordinates and fourth
column must be cluster size.

color.space The color space ("rgb", "hsv", or "lab") in which to plot. If not specified, the
function uses column names to guess the color space.

ref.white Standard reference white for converting lab coordinates to RGB coordinates for
coloring clusters. One of either "A", "B", "C", "E", "D50", "D55", or "D65".

xlim, ylim, zlim X, Y, and Z-axis limits. If not specified, the defaults are 0-1 for all channels in
RGB and HSV space, or 0-100 for L and -100-100 for a and b channels of CIE
Lab space.

42 weightedPairsDistance

main Title for the plot.

scaling Scaling factor for size of clusters.

opacity Transparency value for plotting; must be between 0 and 1.

plus Amount to add to percent column for plotting; can help to make very small (or
0) clusters visible.

... Additional parameters passed to scatterplot3d.

See Also

plotClusters, plotClustersMulti

Examples

clusters <- data.frame(R = runif(20, min = 0, max = 1),
G = runif(20, min = 0, max = 1),
B = runif(20, min = 0, max = 1),
Pct = runif(20, min = 0, max = 1))

plot in RGB space
scatter3dclusters(clusters, scaling = 15, plus = 0.05)

overrule determined color space and plot in HSV space
scatter3dclusters(clusters, scaling = 15, plus = 0.05, color.space = "hsv")

weightedPairsDistance Distance between color clusters with user-specified color/size weights

Description

Distance metric with optional user input for specifying how much the bin size similarity and color
similarity should be weighted when pairing clusters from different color cluster sets.

Usage

weightedPairsDistance(
T1,
T2,
ordering = FALSE,
size.weight = 0.5,
color.weight = 0.5

)

Arguments

T1 Dataframe (especially a dataframe as returned by extractClusters or getImageHist,
but first three columns must be coordinates).

T2 Another dataframe like T1.

weightedPairsDistance 43

ordering Logical. Should clusters by paired in order to minimize overall distance scores
or evaluated in the order given?

size.weight Weight of size similarity in determining overall score and ordering (if order-
ing=T).

color.weight Weight of color similarity in determining overall score and ordering (if order-
ing=T). Color and size weights do not necessarily have to sum to 1.

Value

Similarity score based on size and color similarity of each pair of points in provided dataframes.

Note

Use with caution, since weights can easily swing distance scores more dramatically than might be
expected. For example, if size.weight = 1 and color.weight = 0, two clusters of identical color
but different sizes would not be compared.

Examples

cluster.list <- colordistance::getKMeansList(system.file("extdata",
"Heliconius/Heliconius_B", package="colordistance"), lower=rep(0.8, 3),
upper=rep(1, 3))
cluster.list <- colordistance::extractClusters(cluster.list, ordering=TRUE)
colordistance:::weightedPairsDistance(cluster.list[[1]], cluster.list[[2]],
size.weight=0.8, color.weight=0.2)

Index

barplot, 16, 22, 24, 37

chisqDistance, 2, 10, 15, 21, 24, 27
colorDistance, 3, 10, 27
combineClusters, 4
combineList, 4
convertColor, 5, 6, 24, 30, 39
convertColorSpace, 5, 18, 20–24, 28, 34, 35,

37, 39

EMDistance, 7, 10, 27, 28
exportTree, 8
extractClusters, 5, 9, 10, 25, 29, 32, 36, 37,

41

getColorDistanceMatrix, 8, 10, 25, 29
getHistColors, 12
getHistList, 4, 9, 10, 12, 25, 27, 29, 32, 36
getImageHist, 5–7, 12, 14, 14, 18, 19, 27, 36
getImagePaths, 16, 29
getKMeanColors, 17, 19
getKMeansList, 5, 14, 19, 27–29
getLabHist, 20, 23, 25, 37, 41
getLabHistList, 23, 28, 37, 41

hclust, 8, 25
heatmap.2, 25
heatmapColorDistance, 10, 25

imageClusterPipeline, 26

jpeg, 40

kmeans, 9, 18, 20, 28

loadImage, 15, 21, 29, 37, 38, 40

normalizeRGB, 9, 13, 15, 28, 31

orderClusters, 32

pause, 33

plot_ly, 34, 35
plotClusters, 34, 42
plotClustersMulti, 35, 42
plotHist, 36
plotImage, 37
plotPixels, 38

readPNG, 40
removeBackground, 13, 15, 21, 24, 30, 40

scatter3dclusters, 41
scatterplot3d, 39, 41, 42
solve_LSAP, 9, 32

weightedPairsDistance, 10, 27, 42

44

	chisqDistance
	colorDistance
	combineClusters
	combineList
	convertColorSpace
	EMDistance
	exportTree
	extractClusters
	getColorDistanceMatrix
	getHistColors
	getHistList
	getImageHist
	getImagePaths
	getKMeanColors
	getKMeansList
	getLabHist
	getLabHistList
	heatmapColorDistance
	imageClusterPipeline
	loadImage
	normalizeRGB
	orderClusters
	pause
	plotClusters
	plotClustersMulti
	plotHist
	plotImage
	plotPixels
	removeBackground
	scatter3dclusters
	weightedPairsDistance
	Index

