Package: recolorize 0.1.0
recolorize: Color-Based Image Segmentation
Automatic, semi-automatic, and manual functions for generating color maps from images. The idea is to simplify the colors of an image according to a metric that is useful for the user, using deterministic methods whenever possible. Many images will be clustered well using the out-of-the-box functions, but the package also includes a toolbox of functions for making manual adjustments (layer merging/isolation, blurring, fitting to provided color clusters or those from another image, etc). Also includes export methods for other color/pattern analysis packages (pavo, patternize, colordistance).
Authors:
recolorize_0.1.0.tar.gz
recolorize_0.1.0.zip(r-4.5)recolorize_0.1.0.zip(r-4.4)recolorize_0.1.0.zip(r-4.3)
recolorize_0.1.0.tgz(r-4.4-any)recolorize_0.1.0.tgz(r-4.3-any)
recolorize_0.1.0.tar.gz(r-4.5-noble)recolorize_0.1.0.tar.gz(r-4.4-noble)
recolorize_0.1.0.tgz(r-4.4-emscripten)recolorize_0.1.0.tgz(r-4.3-emscripten)
recolorize.pdf |recolorize.html✨
recolorize/json (API)
NEWS
# Install 'recolorize' in R: |
install.packages('recolorize', repos = c('https://hiweller.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/hiweller/recolorize/issues
- werner - Werner's nomenclature of colors
Last updated 4 months agofrom:71f6d35eca. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 18 2024 |
R-4.5-win | OK | Nov 18 2024 |
R-4.5-linux | OK | Nov 18 2024 |
R-4.4-win | OK | Nov 18 2024 |
R-4.4-mac | OK | Nov 18 2024 |
R-4.3-win | OK | Nov 18 2024 |
R-4.3-mac | OK | Nov 18 2024 |
Exports:absorbLayeradd_imageadjust_colorassignPixelsbackgroundConditionbackgroundIndexblurImagebrick_to_arrayclassify_recolorizecolorClusterscolorResidualsconstructImageeditLayereditLayershclust_colorimDistimHeatmapimposeColorsmatch_colorsmedianColorsmergeLayersplotColorClustersplotColorPaletteplotImageArrayraster_to_arrayreadImagereclusterrecoloredImagerecolorizerecolorize_adjacencyrecolorize_to_patternizerecolorize_to_pngrecolorize2recolorizeVectorreorder_colorsrerun_recolorizesplitByColorthresholdRecolorwernerColor
Dependencies:abindbmpclassclassIntcliclustercodetoolscolorRampscpp11curlDBIdigestdownloadere1071farverfuturefuture.applygeometryglobalsglueigraphimagerjpegKernSmoothlatticelifecyclelightrlinproglistenvlpSolvemagicmagickmagrittrMASSMatrixmgcvmisc3dnlmeparallellypavopkgconfigplot3DplotfunctionspngprogressrproxypurrrrasterRcppRcppProgressreadbitmaprlangs2sfspstringistringrterratiffunitsvctrsviridisLitewkxml2
Introduction
Rendered fromIntroduction.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2023-10-10
Started: 2021-04-08
Step 0: Image acquisition and preparation
Rendered fromstep00_prep.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2021-12-06
Started: 2021-11-30
Step 1: Loading & processing images
Rendered fromstep01_loading.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2021-12-06
Started: 2021-11-30
Step 2: Initial clustering
Rendered fromstep02_initial_cluster.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2021-12-06
Started: 2021-11-30
Step 3: Refinement
Rendered fromstep03_refinement.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2021-12-06
Started: 2021-11-30
Step 4: Tweaks & edits
Rendered fromstep04_manual_tweak.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2022-06-02
Started: 2021-11-30
Step 5: Exporting & visualizing output
Rendered fromstep05_visualization_export.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2021-12-06
Started: 2021-11-30